A Stable and Optimal Complexity Solution Method for Mixed Finite Element Discretizations
نویسنده
چکیده
We outline a solution method for mixed finite element discretizations based on dissecting the problem into three separate steps. The first handles the inhomogeneous constraint, the second solves the flux variable from the homogeneous problem, whereas the third step, adjoint to the first, finally gives the Lagrangian multiplier. We concentrate on aspects involved in the first and third step mainly, and advertise a multi-level method that allows for a stable computation of the intermediate and final quantities in optimal computational complexity.
منابع مشابه
Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term
We study the mixed formulation of the stochastic Hodge–Laplace problem defined on an n-dimensional domain D (n 1), with random forcing term. In particular, we focus on the magnetostatic problem and on the Darcy problem in the three-dimensional case. We derive and analyse the moment equations, that is, the deterministic equations solved by the mth moment (m 1) of the unique stochastic solution o...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملCrank-nicolson Finite Element Discretizations for a 2d Linear Schrödinger-type Equation Posed in a Noncylindrical Domain
Motivated by the paraxial narrow–angle approximation of the Helmholtz equation in domains of variable topography that appears as an important application in Underwater Acoustics, we analyze a general Schrödinger-type equation posed on two-dimensional variable domains with mixed boundary conditions. The resulting initialand boundary-value problem is transformed into an equivalent one posed on a ...
متن کاملLocal Error Estimates for Finite Element Discretizations of the Stokes Equations
Local error estimates are derived which apply to most stable mixed finite element discretizations of the stationary Stokes equations. Résumé. Les estimations locales d’erreur obtenues s’appliquent à la plupart des discrétisations stables par éléments finis mixtes du problème de Stokes stationnaire.
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کامل